Platinum metal thioether macrocyclic complexes: synthesis and single crystal X-ray structure of cis-[$\left.\operatorname{IrCl}_{2}(\mathbf{L})\right] \mathrm{BPh}_{4}$ ($L=1,4,8,11$-tetrathiacyclotetradecane)

Alexander J. Blake, Robert O. Gould, Gillian Reid and Martin Schröder *
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ (Great Britain) (Received April 27th, 1988)

Abstract

Reaction of IrCl_{3} with 1,4,8,11-tetrathiacyclotetradecane (L) in refluxing $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ gives the complex cation $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right]^{+}$. Crystals of $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$ are monoclinic, space group $P 2_{1}$, with a 12.6927(14), b 12.1361(20), c 14.4912(18) \AA, β $111.813(13)^{\circ}, V 2072.4 \AA^{3}, D_{\mathrm{c}} 1.363 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$. The single crystal X-ray structure of $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$ shows a distorted octahedral stereochemistry around $\mathrm{Ir}^{\mathrm{III}}$, with mutually cis Cl^{-}ligands, $\mathrm{Ir}-\mathrm{Cl}(1) 2.389(5), \mathrm{Ir}-\mathrm{Cl}(2) 2.385(5) \AA$, angle $\mathrm{Cl}(1) \mathrm{IrCl}(2) 91.02(16)^{\circ}$. The tetrathia macrocycle is coordinated to the metal centre via all four S-donors (Ir-S(1) 2.277(4), Ir-S(4) 2.287(5), Ir-S(8) 2.268(4), Ir-S(11) $2.343(5) \AA$) with $S(1), S(4)$, and $S(8)$ trans to $\mathrm{Cl}(2), \mathrm{S}(11)$, and $\mathrm{Cl}(1)$ respectively.

Introduction

We have been investigating the synthesis, structure and redox properties of platinum metal complexes of polydentate thioether macrocycles [1,2]. The fourteenmembered ring, tetrathia ligand 1,4,8,11-tetrathiacyclotetradecane (L), the sulphurdonor analogue of cyclam, has been found to bind effectively to a range of second and third row transition metal centres including $\mathrm{Hg}^{\text {II }}$ [3,4], $\mathrm{Nb}^{\mathbf{V}}$ [5], $\mathrm{Ru}^{\text {II }}$ [6], $\mathbf{R h}^{\mathrm{I}}$ $[7,8], \mathrm{Rh}^{\text {III }}$ [8], $\mathrm{Pd}^{\text {II }}$ [1], while ligands of larger hole size have been found to complex with $\mathrm{Mo}^{0}, \mathrm{Mo}^{\text {II }}$ [9] and $\mathrm{Mo}^{\mathrm{IV}}$ [10]. This contrasts with the poor binding properties of non-cyclic thioether ligands to transition metal ions [11]. Very few non-porphyrin macrocyclic complexes of Ir have been reported previously [1,12], and no examples of Ir complexation by L have been described. We report here the synthesis and crystal structure of the $\mathrm{Ir}^{\mathrm{HI}}$ species cis-[$\left.\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$.

(L)

Results and discussion

$\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was treated with one molar equivalent of L in refluxing $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ under N_{2} for 14 h in the presence of an excess of NaBPh_{4}. On cooling, the yellow/brown precipitate was collected and recrystallised from $\mathrm{CH}_{3} \mathrm{NO}_{2}$ to afford a cream-coloured product. The IR spectrum of this complex showed, in addition to bands due to coordinated L and $\mathrm{BPh}_{4}{ }^{-}$, two bands at 310 and $305 \mathrm{~cm}^{-1}$ assigned to $\mathrm{Ir}-\mathrm{Cl}$ stretching vibrations, $\boldsymbol{\mu}(\mathrm{Ir}-\mathrm{Cl})$, suggesting the formation of a cis-dichloro complex. The electronic spectrum of the complex showed absorptions at 348 and 297 nm tentatively assigned to $d-d$ transitions. The magnitudes of the extinction coefficients, 113 and $1,400 M^{-1} \mathrm{~cm}^{-1}$ respectively, for these absorptions are indicative of a cis configuration at the metal centre; $d-d$ transitions in d^{6} metal complexes have been shown previously to have larger extinction coefficients for cis than for trans-configurations owing to the lower symmetry of cis-isomers, e.g. cisand trans- $\left[\mathrm{Rh}(\mathrm{X})_{2} \text { (cyclam) }\right]^{+}[13-15]$. The fast-atom bombardment mass spectrum of the complex shows the main molecular ion peak at $M^{+}=531$ corresponding to $\left[{ }^{193} \mathrm{Ir}^{35} \mathrm{Cl}_{2}(\mathrm{~L})\right]^{+}$, with the correct isotopic distribution. Daughter peaks at $M^{+}=496$ and 461 correspond to $\left[{ }^{193} \mathrm{Ir}{ }^{35} \mathrm{Cl}(\mathrm{L})\right]^{+}$and $\left[{ }^{193} \mathrm{Ir}(\mathrm{L})\right]^{+}$respectively, formed by successive loss of Cl . These data together with analytical data suggest that the complex isolated was $c i s-\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right]^{+} \mathrm{BPh}_{4}{ }^{-}$.

In order to confirm the structure of the complex and the connectivity and conformation of the macrocyclic ligand, a single crystal X-ray structural determination was undertaken. Crystals of cis- $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$ were grown from $\mathrm{CH}_{3} \mathrm{NO}_{2} / \mathrm{Et}_{2} \mathrm{O}$. Figure 1 gives views of the complex cation. The structure analysis confirms the cis configuration of the Cl^{-}ligands, with $\mathrm{Ir}-\mathrm{Cl}(1) 2.389(5), \mathrm{Ir}-\mathrm{Cl}(2)$ $2.385(5) \AA$. The macrocycle is coordinated to the $\mathrm{Ir}^{\mathrm{III}}$ centre as a tetradentate ligand, $\operatorname{Ir}-\mathrm{S}(1) \mathbf{2 . 2 7 7}(4), \mathrm{Ir}-\mathrm{S}(4) 2.287(5), \mathrm{Ir}-\mathrm{S}(8) \mathbf{2 . 2 6 8 (4)}, \mathrm{Ir}-\mathrm{S}(11) 2.343(5) \AA$, and adopts a folded conformation with $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ lying trans to $\mathrm{S}(8)$ and $\mathrm{S}(1)$ respectively. The conformation of the coordinated ligand in this complex is similar to that in cis- $\left[\mathrm{RuCl}_{2}(\mathrm{~L})\right][6]$ and indicates a general tendency of L to bind to larger metal ions to give cis octahedral complexes. In contrast, cyclam binds to $\mathrm{Rh}^{\mathrm{III}}$ to give both cisand trans-dichloro complexes [12,15], while only a trans isomer has been isolated for the cation $\left[\mathrm{RhCl}_{2}(\mathrm{tmc})\right]^{+} \quad(\operatorname{tmc}=1,4,8,11$-tetramethyl-1,4,8,11tetraazacyclotetradecane) [16]. The ${ }^{13} \mathrm{C}$ NMR spectrum of cis-[$\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right]^{+}$in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ shows five resonances at $\delta 37.99,29.52,28.96,28.39,23.90 \mathrm{ppm}$ for the secondary carbon centres of the coordinated macrocycle (L), confirming the presence of only one isomer and retention of the cis configuration in solution. The metal-sulphur

Fig. 1. Two views of the single crystal X-ray structure of cis-[$\left[\mathrm{CCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$ with numbering scheme used.
bond lengths in cis-[$\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right]^{+}$follow the same pattern as found for cis-[$\left.\mathrm{RuCl}_{2}(\mathrm{~L})\right]^{+}$ [6]. For the $\mathrm{Ru}^{\text {II }}$ complex, it was noted that the metal-sulphur bond distances trans to $\mathrm{Cl}^{-}(2.262(1) \AA)$ were shorter than those trans to $\mathrm{S}(2.333(1) \AA)$. This is attributed to greater $\mathrm{Ru} \rightarrow \mathrm{S}(\pi)$ back-donation to the thioether donors trans to Cl^{-} [6]. For cis-[$\left.\mathrm{IrCl}_{2}(\mathrm{~L})\right]^{+}$, the same general pattern in bond lengths is observed, with Ir-S 2.277(4), 2.268(4) \AA (trans to Cl^{-}) and 2.287(5) 2.343(5) \AA (trans to S).

Cyclic voltammetry of cis-[IrCl $\left.\mathrm{I}_{2}(\mathrm{~L})\right] \mathrm{PF}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}\left(0.1 \mathrm{M}{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ at platinum electrodes shows no oxidation in the range $0 \rightarrow+2.0 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$. The complex undergoes an irreversible reduction at $E_{\mathrm{p}}=-1.82 \mathrm{~V} \mathrm{vs} . \mathrm{Fc} / \mathrm{Fc}^{+}$at a scan rate of $200 \mathrm{mV} \mathrm{s}{ }^{-1}$, presumably corresponding to the formation of an Ir^{1} species of type $[\operatorname{Ir}(\mathrm{L})]^{+}$via loss of Cl^{-}. This occurs at a considerably more cathodic potential than that for the analogous tetra-aza complex trans- $\left[\mathrm{RhCl}_{2}(\mathrm{tmc})\right]^{+}$which shows a quasi-reversible $\mathrm{Rh}^{\mathrm{III} / \mathrm{II}}$ couple at $E_{1 / 2}-0.99 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$in $\mathrm{CH}_{3} \mathrm{CN}$ [16]. Larger thioether ring systems may be more likely to give trans-dichloro complexes, and to stabilise lower valent, electron-rich Ir centres [7].

Experimental

Infrared spectra were recorded as Nujol mulls or as KBr or CsI discs on a Perkin-Elmer 598 spectrometer over the range $200-4000 \mathrm{~cm}^{-1}$. UV-visible spectra were recorded for solutions in quartz cells using a Pye Unicam SP8-400 spectrophotometer. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. Electron impact mass spectra were obtained on a Kratos MS 902 and fast atom bombardment mass spectra on a Kratos MS 50TC spectrometer. Electrochemical measurements were performed with a Bruker E310 Universal Modular Polarograph; for all readings a three-electrode potentiostatic system in acetonitrile containing $0.1 M^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as supporting electrolyte was used. Cyclic voltammetric measurements were carried out with a double platinum electrode and a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. Potentials are quoted versus ferro-
cene/ferrocinium, $\mathrm{Fc} / \mathrm{Fc}^{+} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 200 and 50.32 MHz , respectively, on Bruker a WP200 spectrometer.

1,4,8,11-Tetrathiacyclotetradecane was purchased from Aldrich Chemicals.
Synthesis of $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] B \mathrm{Bh}_{4}$
To a solution of $1,4,8,11$-tetrathiacyclotetradecane ($0.04 \mathrm{~g}, 1.49 \times 10^{-4} \mathrm{~mol}$) in refluxing $\mathrm{EtOH}\left(50 \mathrm{~cm}^{3}\right)$ containing an excess of $\mathrm{NaBPh}_{4}\left(0.075 \mathrm{~g}, 2.19 \times 10^{-4}\right.$ mol) was added a solution of $\mathrm{IrCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(0.052 \mathrm{~g}, 1.47 \times 10^{-4} \mathrm{~mol}\right)$ in water (5 cm^{3}). The mixture was refluxed under N_{2} for 14 h then allowed to cool, and the yellow/brown precipitate collected. The product was dissolved in hot MeNO_{2} and filtered to remove insoluble chloro-bridged polymers. The filtrate was cooled to afford a cream precipitate of $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$, which was collected and dried in vacuo. Yield $0.042 \mathrm{~g}, 33 \%$. Elemental analysis: found $\mathrm{C}, 47.4 ; \mathrm{H}, 4.8 \%$ calculated for $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4} \mathrm{C}, 48.0 ; \mathrm{H}, 4.7 \%$. Infrared spectrum (CsI disc): (L): 2910(m), $1430(\mathrm{vs}), 1270(\mathrm{~m}) \mathrm{cm}^{-1}, \mathrm{BPh}_{4}{ }^{-}: 3060,2980,1580,1480,1430,860,840,810,610$, $530 \mathrm{~cm}^{-1}$, ($\mathrm{Ir}-\mathrm{Cl}$): $310,305 \mathrm{~cm}^{-1}$. Mass spectrum (FAB) in dmf/glycerol matrix: M^{+}(found) $=531,496,461 ; M^{+}$(calculated) $=531$ for $\left[{ }^{193} \mathrm{Ir}^{35} \mathrm{Cl}_{2}(\mathrm{~L})\right]^{+}, 496$ for $\left.{ }^{193} \mathrm{Ir}^{35} \mathrm{Cl}(\mathrm{L})\right]^{+}, 461$ for $\left[{ }^{193} \mathrm{Ir}(\mathrm{L})\right]^{+}$. UV-VIS (MeCN): $\lambda_{\max } 348$ (113), 297 (1, 400), $275(2,760), 267(3,370), 216 \mathrm{~nm}\left(\epsilon_{\max } 29,400 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.

Synthesis of $\left[\mathrm{IrCl}_{2}(L)\right] P F_{6}$
The $\mathrm{PF}_{6}{ }^{-}$salt was prepared by using $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in place of NaBPh_{4} in the above preparation. Elemental analysis: Found $\mathrm{C}, 18.1 ; \mathrm{H}, 3.0 ; \mathrm{S}$, 18.8. $\left[\mathrm{IrCl}_{2}(\mathrm{~L})\right] \mathrm{PF}_{6}$ calcd.: $\mathrm{C}, 17.8 ; \mathrm{H}, 3.0 ; \mathrm{S}, 18.9 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 293 \mathrm{~K}, 200 \mathrm{MHz}\right): \delta 2.5-3.5$ $\operatorname{ppm}\left(\mathrm{m}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 293 \mathrm{~K}, 50.32 \mathrm{MHz}\right): \delta 37.99,29.52,28.96$, 28.39, 23.90 ppm .
X-Ray structure determination of $\left[\operatorname{IrCl}_{2}(\mathrm{~L})\right] \mathrm{BPh}_{4}$
A colourless crystal ($0.46 \times 0.15 \times 0.15 \mathrm{~mm}$) suitable for an X-ray diffraction study was obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into a solution of the complex in $\mathrm{CH}_{3} \mathrm{NO}_{2}$.

Crystal data. $\quad \mathrm{C}_{34} \mathrm{H}_{40} \mathrm{BCl}_{2} \mathrm{IrS}_{4}, M=850.85$, monoclinic, space group $P 2_{1}$, with $a 12.6927(14), b 12.1361(20), c 14.4912(18) \AA, \beta 111.813(13)^{\circ}, V 2072.4 \AA^{3}$ (From θ values of 20 reflections measured at $\pm \omega, 19<2 \theta<30^{\circ}, \lambda 0.71073 \AA$), $Z=2, D_{\text {c }}$ $1.363 \mathrm{~g} \mathrm{~cm}^{-3}, \mu 35.18 \mathrm{~cm}^{-1}, F(000)=848$.

Table 1
Bond lengths (\AA) with standard deviations

$\mathbf{I r}(1)-\mathrm{S}(1)$	$2.277(4)$	$\mathrm{S}(8)-\mathrm{C}(7)$	$1.772(21)$
$\mathrm{Ir}(1)-\mathrm{S}(4)$	$2.287(5)$	$\mathrm{S}(8)-\mathrm{C}(9)$	$1.775(20)$
$\mathrm{Ir}(1)-\mathrm{S}(8)$	$2.268(4)$	$\mathrm{S}(11)-\mathrm{C}(10)$	$1.851(23)$
$\mathrm{Ir}(1)-\mathrm{S}(11)$	$2.343(5)$	$\mathrm{S}(11)-\mathrm{C}(12)$	$1.811(21)$
$\operatorname{Ir}(1)-\mathrm{Cl}(1)$	$2.389(5)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.55(3)$
$\operatorname{Ir}(1)-\mathrm{Cl}(2)$	$2.385(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.46(3)$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.855(21)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.58(3)$
$\mathrm{S}(1)-\mathrm{C}(14)$	$1.809(17)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.59(3)$
$\mathrm{S}(4)-\mathrm{C}(3)$	$1.781(20)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.48(3)$
$\mathrm{S}(4)-\mathrm{C}(5)$	$1.755(24)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.57(3)$

Table 2
Angles (degrees) with standard deviations

$S(1)-\operatorname{Ir}(1)-S(4)$	$88.10(15)$	$\operatorname{Ir}(1)-S(4)-C(5)$	$111.3(8)$
$S(1)-\operatorname{Ir}(1)-S(8)$	$86.42(15)$	$C(3)-S(4)-C(5)$	$102.1(10)$
$S(1)-\operatorname{Ir}(1)-S(11)$	$97.65(15)$	$\operatorname{Ir}(1)-S(8)-C(7)$	$110.1(7)$
$S(1)-\operatorname{Ir}(1)-C l(1)$	$91.29(16)$	$\operatorname{Ir}(1)-S(8)-C(9)$	$103.5(6)$
$S(1)-\operatorname{Ir}(1)-C l(2)$	$176.15(15)$	$C(7)-S(8)-C(9)$	$103.7(9)$
$S(4)-\operatorname{Ir}(1)-S(8)$	$98.93(16)$	$\operatorname{Ir}(1)-S(11)-C(10)$	$103.1(7)$
$S(4)-\operatorname{Ir}(1)-S(11)$	$172.26(16)$	$\operatorname{Ir}(1)-S(11)-C(12)$	$111.0(7)$
$S(4)-\operatorname{Ir}(1)-C l(1)$	$86.72(16)$	$C(10)-S(11)-C(12)$	$100.2(10)$
$S(4)-\operatorname{Ir}(1)-C l(2)$	$88.96(16)$	$S(1)-C(2)-C(3)$	$103.5(13)$
$S(8)-\operatorname{Ir}(1)-S(11)$	$86.64(16)$	$S(4)-C(3)-C(2)$	$109.0(14)$
$S(8)-\operatorname{Ir}(1)-C l(1)$	$173.81(16)$	$S(4)-C(5)-C(6)$	$118.5(18)$
$S(8)-\operatorname{Ir}(1)-C l(2)$	$91.58(15)$	$C(5)-C(6)-C(7)$	$118.7(20)$
$S(11)-\operatorname{Ir}(1)-C l(1)$	$87.97(16)$	$S(8)-C(7)-C(6)$	$108.0(15)$
$S(11)-\operatorname{Ir}(1)-C l(2)$	$85.51(16)$	$S(8)-C(9)-C(10)$	$105.0(13)$
$C l(1)-\operatorname{Ir}(1)-C l(2)$	$91.02(16)$	$S(11)-C(10)-C(9)$	$107.4(14)$
$\operatorname{Ir}(1)-S(1)-C(2)$	$99.9(7)$	$S(11)-C(12)-C(13)$	$120.4(15)$
$\operatorname{Ir}(1)-S(1)-C(14)$	$110.0(6)$	$C(12)-C(13)-C(14)$	$116.3(17)$
$C(2)-S(1)-C(14)$	$104.8(9)$	$S(1)-C(14)-C(13)$	$106.5(12)$
$\operatorname{Ir}(1)-S(4)-C(3)$	$103.4(7)$		

Table 3
Torsion angles (degrees) with standard deviations

$S(4)-\operatorname{Ir}(1)-S(1)-C(2)$	$25.7(7)$	$S(1)-\operatorname{Ir}(1)-S(11)-C(12)$	$23.7(7)$
$S(4)-\operatorname{Ir}(1)-S(1)-C(14)$	$135.5(6)$	$S(4)-\operatorname{Ir}(1)-S(11)-C(10)$	$139.5(13)$
$S(8)-\operatorname{Ir}(1)-S(1)-C(2)$	$124.8(7)$	$S(4)-\operatorname{lr}(1)-S(11)-C(12)$	$-114.0(13)$
$S(8)-\operatorname{Ir}(1)-S(1)-C(14)$	$-125.4(6)$	$S(8)-\operatorname{Ir}(1)-S(11)-C(10)$	$3.1(7)$
$S(11)-\operatorname{Ir}(1)-S(1)-C(2)$	$-149.1(7)$	$S(8)-\operatorname{Ir}(1)-S(11)-C(12)$	$109.6(7)$
$S(11)-\operatorname{Ir}(1)-S(1)-C(14)$	$-39.3(6)$	$C l(1)-\operatorname{Ir}(1)-S(11)-C(10)$	$-173.8(7)$
$C l(1)-\operatorname{Ir}(1)-S(1)-C(2)$	$-61.0(7)$	$C l(1)-\operatorname{Ir}(1)-S(11)-C(12)$	$-67.3(7)$
$C l(1)-\operatorname{Ir}(1)-S(1)-C(14)$	$48.8(6)$	$C l(2)-\operatorname{Ir}(1)-S(11)-C(10)$	$95.0(7)$
$C l(2)-\operatorname{Ir}(1)-S(1)-C(2)$	$66.0(24)$	$C l(2)-\operatorname{Ir}(1)-S(11)-C(12)$	$-158.5(7)$
$C l(2)-\operatorname{Ir}(1)-S(1)-C(14)$	$175.8(22)$	$\operatorname{Ir}(1)-S(1)-C(2)-C(3)$	$-55.6(13)$
$S(1)-\operatorname{Ir}(1)-S(4)-C(3)$	$3.7(7)$	$C(14)-S(1)-C(2)-C(3)$	$-169.5(12)$
$S(1)-\operatorname{Ir}(1)-S(4)-C(5)$	$112.6(9)$	$\operatorname{Ir}(1)-S(1)-C(14)-C(13)$	$67.0(12)$
$S(8)-\operatorname{Ir}(1)-S(4)-C(3)$	$-82.4(7)$	$C(2)-S(1)-C(14)-C(13)$	$173.6(12)$
$S(8)-\operatorname{Ir}(1)-S(4)-C(5)$	$26.5(9)$	$\operatorname{Ir}(1)-S(4)-C(3)-C(2)$	$-40.6(14)$
$S(11)-\operatorname{Ir}(1)-S(4)-C(3)$	$141.9(13)$	$C(5)-S(4)-C(3)-C(2)$	$-156.3(14)$
$S(11)-\operatorname{Ir}(1)-S(4)-C(5)$	$-109.3(14)$	$\operatorname{Ir}(1)-S(4)-C(5)-C(6)$	$-41.8(20)$
$C l(1)-\operatorname{Ir}(1)-S(4)-C(3)$	$95.1(7)$	$C(3)-S(4)-C(5)-C(6)$	$67.9(20)$
$C l(1)-\operatorname{Ir}(1)-S(4)-C(5)$	$-156.0(9)$	$\operatorname{Ir}(1)-S(8)-C(7)-C(6)$	$60.6(15)$
$C l(2)-\operatorname{Ir}(1)-S(4)-C(3)$	$-173.8(7)$	$C(9)-S(8)-C(7)-C(6)$	$170.7(14)$
$C l(2)-\operatorname{Ir}(1)-S(4)-C(5)$	$-64.9(9)$	$\operatorname{Ir}(1)-S(8)-C(9)-C(10)$	$-56.7(13)$
$S(1)-\operatorname{Ir}(1)-S(8)-C(7)$	$-125.0(7)$	$C(7)-S(8)-C(9)-C(10)$	$-171.7(13)$
$S(1)-\operatorname{Ir}(1)-S(8)-C(9)$	$124.7(7)$	$\operatorname{Ir}(1)-S(11)-C(10)-C(9)$	$-37.2(14)$
$S(4)-\operatorname{Ir}(1)-S(8)-C(7)$	$-37.5(7)$	$C(12)-S(11)-C(10)-C(9)$	$-151.8(14)$
$S(4)-\operatorname{Ir}(1)-S(8)-C(9)$	$-147.8(7)$	$\operatorname{Ir}(1)-S(11)-C(12)-C(13)$	$-37.5(18)$
$S(11)-\operatorname{Ir}(1)-S(8)-C(7)$	$137.1(7)$	$C(10)-S(11)-C(12)-C(13)$	$70.9(18)$
$S(11)-\operatorname{Ir}(1)-S(8)-C(9)$	$26.8(7)$	$S(1)-C(2)-C(3)-S(4)$	$64.7(14)$
$C l(1)-\operatorname{Ir}(1)-S(8)-C(7)$	$166.5(16)$	$S(4)-C(5)-C(6)-C(7)$	$72.1(25)$
$C l(1)-\operatorname{Ir}(1)-S(8)-C(9)$	$56.3(17)$	$C(5)-C(6)-C(7)-C(8)$	$-81.6(22)$
$C l(2)-\operatorname{Ir}(1)-S(8)-C(7)$	$51.7(7)$	$S(8)-C(9)-C(10)-S(11)$	$62.1(15)$
$C l(2)-\operatorname{Ir}(1)-S(8)-C(9)$	$-58.6(7)$	$S(11)-C(12)-C(13)-C(14)$	$70.0(22)$
$S(1)-\operatorname{Ir(1)-S(11)-C(10)}$	$-82.8(7)$	$C(12)-C(13)-C(14)-S(1)$	$-84.5(18)$

Table 4
Atomic coordinates with esds

	x	${ }^{\prime}$	z	$U_{\text {iso }}$
Ir(1)	$-0.13020(4)$	0.0000	-0.16511(3)	0.0389(3)
S(1)	-0.3025(3)	-0.0714(4)	-0.2598(3)	0.0541(24)
S(4)	-0.0928(4)	-0.1606(4)	-0.0762(3)	0.062(3)
S(8)	-0.0728(4)	-0.0509(4)	-0.2896(3)	0.0557(25)
S(11)	-0.1573(4)	0.1766 (4)	-0.2355(3)	0.068(3)
Cl(1)	-0.2034(4)	0.0680(4)	-0.0461(3)	0.078(3)
Cl(2)	0.0556 (3)	0.0628(4)	-0.0661(3)	0.069(3)
C(2)	-0.3221(16)	-0.1701(16)	-0.1698(15)	0.083(13)
C(3)	-0.2142(15)	-0.2433(15)	-0.1396(15)	0.074(12)
C(5)	$0.0160(18)$	-0.2353(18)	-0.0949(18)	0.096(7)
C(6)	$0.0163(20)$	-0.2421(17)	-0.1955(19)	$0.106(18)$
C(7)	0.0491(16)	-0.1359(16)	-0.2423(16)	0.083(14)
C(9)	-0.0203(15)	0.0734 (15)	-0.3208(13)	0.075(13)
C(10)	-0.1231(16)	0.1579(19)	-0.3481(16)	0.094(16)
C(12)	-0.3068(17)	$0.2095(16)$	-0.2922(14)	0.084(14)
C(13)	-0.3900(15)	$0.1239(19)$	-0.3451(14)	0.084(14)
$\mathrm{C}(14)$	-0.4121(12)	$0.0311(13)$	-0.2789(13)	0.071(13)
B(1)	-0.7682(12)	$0.0237(13)$	$-0.5127(10)$	0.044(4)
$\mathrm{C}\left(1^{\prime}\right)$	-0.6589(5)	$0.0257(10)$	-0.6377(5)	0.054(4)
$\mathrm{C}\left(2^{\prime}\right)$	-0.6517(5)	$0.0128(10)$	$-0.7309(5)$	0.064(4)
$\mathrm{C}\left(3^{\prime}\right)$	-0.7481(5)	$-0.0152(10)$	-0.8130(5)	0.076(5)
$\mathrm{C}\left(4^{\prime}\right)$	-0.8517(5)	$-0.0304(10)$	-0.8019(5)	0.055(4)
C(5')	-0.8589(5)	$-0.0175(10)$	$-0.7087(5)$	0.054(4)
C(6')	-0.7625(5)	$0.0105(10)$	-0.6267(5)	0.043(3)
$\mathrm{C}\left(7^{\prime}\right)$	-0.9666(6)	-0.0705(5)	$-0.5299(7)$	0.042(3)
$\mathrm{C}\left(8^{\prime}\right)$	-1.0838(6)	-0.0678(5)	-0.5545(7)	0.058(4)
$\mathrm{C} 9^{\prime}$)	-1.1419(6)	$0.0322(5)$	-0.5778(7)	0.057(4)
$\mathrm{C}\left(10^{\prime}\right)$	-1.0828(6)	0.1295(5)	$-0.5765(7)$	0.056(4)
$\mathrm{C}\left(11^{\prime}\right)$	-0.9657(6)	0.1268 (5)	-0.5519(7)	0.045(3)
$\mathrm{C}\left(12^{\prime}\right)$	-0.9076(6)	0.0268(5)	-0.5286(7)	0.043(3)
C(13')	-0.6310(9)	-0.1535(9)	-0.4643(6)	0.059(4)
$\mathrm{C}\left(14^{\prime}\right)$	-0.5816(9)	-0.2434(9)	-0.4038(6)	0.064(4)
$\mathrm{C}\left(15^{\prime}\right)$	-0.6062(9)	-0.2644(9)	$-0.3193(6)$	0.063(4)
$\mathrm{C}\left(16^{\prime}\right)$	-0.6802(9)	-0.1954(9)	-0.2953(6)	0.072(5)
C(17')	-0.7296(9)	-0.1054(9)	-0.3559(6)	0.060(4)
$\mathrm{C}\left(18^{\prime}\right)$	-0.7050(9)	-0.0845(9)	-0.4404(6)	0.046(3)
$\mathrm{C}\left(19^{\prime}\right)$	-0.6820(9)	$0.1565(7)$	$-0.3568(6)$	0.064(4)
$\mathrm{C}\left(20^{\prime}\right)$	-0.6334(9)	0.2549(7)	$-0.3108(6)$	0.069(5)
C(21')	-0.6144(9)	$0.3405(7)$	$-0.3669(6)$	0.067(4)
$\mathrm{C}\left(22^{\prime}\right)$	-0.6439(9)	0.3277(7)	-0.4692(6)	0.072(5)
C(23')	-0.6925(9)	0.2293(7)	-0.5152(6)	0.059(4)
$\mathrm{C}\left(24^{\prime}\right)$	-0.7116(9)	0.1437(7)	-0.4590(6)	0.045(3)

Data collection and processing. Stoe-Siemens AED2 four-circle diffractometer, graphite-monochromated Mo- K_{α} X-radiation, $\omega-\theta$ scans with ω scan width (1.4 + $0.35 \tan \theta)^{\circ}, 2882$ reflections measured $\left(2 \theta_{\max } 45^{\circ}, h-13 \rightarrow 12, k 0 \rightarrow 13\right.$, l $0 \rightarrow 14$), giving 2508 with $F \geqslant 6 \sigma(F)$ for use in subsequent calculations. No significant crystal decay was observed.

Structure analysis and refinement. The Ir position was located from a Patterson synthesis and input to DIRDIF [17], which located the Cl and S atoms. Iterative
least-squares refinements and difference Fourier syntheses [18] located all other non-H atoms. At isotropic convergence, final correction for absorption was made using DIFABS [19]. (An initial absorption correction was made using 48Ψ scans (max. transmission factor $=0.2382, \mathrm{~min} .=0.2022$). . Anisotropic thermal parameters were refined for $\mathrm{Ir}, \mathrm{S}, \mathrm{Cl}$, and C atoms of the cation. H atoms were included at calculated positions [18]. Phenyl groups of the BPh_{4} counter-ions were refined as rigid groups. The absolute configuration of the structure was not easy to establish with certainty as both hands refined well to essentially the same R-factors. The 20 reflections were selected with the greatest discrimination factor, defined as $D=$ $\left|F_{1} F_{2}\right| \sin ^{2}\left(\phi_{1}-\phi_{2}\right) /\left|F_{\mathrm{o}}\right|$ where subscripts 1 and 2 refer to structure factors calculated for the Ir atoms and for the other atoms respectively. For the fully refined data sets, these 20 data gave $R=0.032$ for the hand chosen, and 0.049 for the opposite hand. More strikingly, bond lengths to Ir are much less consistent in the less favoured hand, the $\mathbf{I r}-\mathrm{S}$ lengths being more divergent, and the $\mathrm{Ir}-\mathrm{Cl}$ lengths being much shorter. The weighting scheme $w^{-1}=\sigma^{2}(F)+0.002572 F^{2}$ gave satisfactory analyses. At convergence, $R, R_{w}=0.0363$ and 0.0509 respectively for 205 parameters, $S=1.137$. The maximum and minimum residues in the final ΔF syntheses were +0.67 and $-0.64 \mathrm{e}^{-3}$ respectively. Illustrations were prepared by use of ORTEP [20] and molēcular geometry calculations by use of CALC [21], scattering factor data were taken from ref. 22. Bond lengths, angles, torsion angles and fractional coordinates are given in Tables 1-4.

Acknowledgements

We thank the SERC for support and Johnson-Matthey Plc for generous loans of platinum metals.

References

1 M. Schröder, Pure Appl. Chem., 60 (1988) 517.
2 M.N. Bell, A.J. Blake, R.O. Gould, A.J. Holder, T.I. IIyde, A.J. Lavery, G. Reid and M. Schröder, J. Inclusion Phenomena, 5 (1987) 169.
3 N.W. Alcock, N. Herron and P. Moore, J. Chem. Soc., Chem. Commun., (1976) 886.
4 N.W. Alcock, N. Herron and P. Moore, J. Chem. Soc., Dalton Trans., (1978) 394.
5 R.E. DeSimone and M.D. Glick, J. Am. Chem. Soc., 97 (1974) 942.
6 T.F. Lai and C.K. Poon, J. Chem. Soc., Dalton Trans., 1982, 1465.
7 T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto and T. Higuchi, J. Chem. Soc., Chem. Commun., 1985, 1137.
8 W.D. Lemke, K.E. Travis, N.E. Takvoryan and D.H. Busch, Adv. Chem. Ser., 150 (1977) 358. See also: K. Travis and D.H. Busch, Inorg. Chem., 13 (1974) 2591.
9 T. Yoshida, T. Adachi, T. Ueda, M. Watanabe, M. Kaminaka and T. Higuchi, Angew. Chem., 99 (1987) 1182; Angew. Chem. Int. Ed. Engl., 26 (1987) 1171.

10 J. Cragel, V.B. Petts, M.D. Glick and R.E. DeSimone, Inorg. Chem., 17 (1978) 2885; R.E. DeSimone and M.D. Glick, ibid., 17 (1978) 3574.
11 S.G. Murray and F.R. Hartley, Chem. Rev., 81 (1981) 365.
12 C.-K. Poon, T.-W. Tang and C.-M. Che, J. Chem. Soc., Dalton Trans., (1981) 1697; C.-K. Poon, T-W Tang and C-M. Che, J. Chem. Soc., Dalton Trans., (1983) 1647; J. MacB. Harrowfield, A.J. Herit, P.A. Lay, A.M. Sargeson, A.M. Bond, W.A. Mulac and J.C. Sullivan, J. Am. Chem. Soc., 105 (1983) 5503; A.J. Blake, T.I. Hyde, R.S.E. Smith and M. Schröder, J. Chem. Soc., Chem. Commun., (1986) 334; A.J. Blake, T.I. Hyde, and M. Schröder, J. Chem. Soc., Dalton Trans., (1988) 1165.
13 E.J. Bounsall and S.R. Koprich, Can. J. Chem., 44 (1970) 1481.

14 P.K. Bhattacharya, J. Chem. Soc., Dalton Trans., (1980) 810.
15 M.E. Sosa and M.L. Tobe, J. Chem. Soc., Dalton Trans., (1986) 427; M.J. Rosales, M.E. Sosa and M.L. Tobe, J. Coord. Chem., 16 (1987) 59.

16 A.J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., (1988) 1561.
17 DIRDIF, P.T. Beurskens, W.P. Bosman, H.M. Doesbury, Th. E.M. van den Hark, P.A.J. Prick, J.H. Noordik, G. Beurskens, R.O. Gould and V. Parthasarathia, Applications of Direct Methods to Difference Structure Factors, University of Nijmegen, Netherlands, 1983.
18 SHELX76, Program for Crystal Structure Determination, G.M. Sheldrick, University of Cambridge, 1976.

19 DIFABS, Program for Empirical Absorption Corrections, N. Walker and D. Stuart, Acta Crystallogr. A, 39 (1983) 158.
20 ORTEPII, interactive version. P.D. Mallinson and K.W. Muir, J. Appl. Cryst., 18 (1985) 51.
21 CALC, Fortran 77 version. R.O. Gould and P. Taylor, University of Edinburgh, 1985.
22 D.T. Cromer and J.L. Mann, Acta Crystallogr. A, 24 (1968) 321.

