Platinum metal thioether macrocyclic complexes: synthesis and single crystal X-ray structure of cis-[lrCl₂(L)]BPh₄ (L = 1,4,8,11-tetrathiacyclotetradecane)

Alexander J. Blake, Robert O. Gould, Gillian Reid and Martin Schröder *

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ (Great Britain) (Received April 27th, 1988)

Abstract

Reaction of IrCl₃ with 1,4,8,11-tetrathiacyclotetradecane (L) in refluxing EtOH/H₂O gives the complex cation $[IrCl_2(L)]^+$. Crystals of $[IrCl_2(L)]BPh_4$ are monoclinic, space group P2₁, with a 12.6927(14), b 12.1361(20), c 14.4912(18) Å, β 111.813(13)°, V 2072.4 Å³, D_c 1.363 g cm⁻³, Z = 2. The single crystal X-ray structure of $[IrCl_2(L)]BPh_4$ shows a distorted octahedral stereochemistry around Ir¹¹¹, with mutually *cis* Cl⁻ ligands, Ir-Cl(1) 2.389(5), Ir-Cl(2) 2.385(5) Å, angle Cl(1)IrCl(2) 91.02(16)°. The tetrathia macrocycle is coordinated to the metal centre via all four S-donors (Ir-S(1) 2.277(4), Ir-S(4) 2.287(5), Ir-S(8) 2.268(4), Ir-S(11) 2.343(5) Å) with S(1), S(4), and S(8) *trans* to Cl(2), S(11), and Cl(1) respectively.

Introduction

We have been investigating the synthesis, structure and redox properties of platinum metal complexes of polydentate thioether macrocycles [1,2]. The fourteenmembered ring, tetrathia ligand 1,4,8,11-tetrathiacyclotetradecane (L), the sulphurdonor analogue of cyclam, has been found to bind effectively to a range of second and third row transition metal centres including Hg^{II} [3,4], Nb^V [5], Ru^{II} [6], Rh^I [7,8], Rh^{III} [8], Pd^{II} [1], while ligands of larger hole size have been found to complex with Mo⁰, Mo^{II} [9] and Mo^{IV} [10]. This contrasts with the poor binding properties of non-cyclic thioether ligands to transition metal ions [11]. Very few non-porphyrin macrocyclic complexes of Ir have been reported previously [1,12], and no examples of Ir complexation by L have been described. We report here the synthesis and crystal structure of the Ir^{III} species *cis*-[IrCl₂(L)]BPh_d.

Results and discussion

 $IrCl_3 \cdot 3H_2O$ was treated with one molar equivalent of L in refluxing EtOH/H₂O under N₂ for 14 h in the presence of an excess of NaBPh₄. On cooling, the yellow/brown precipitate was collected and recrystallised from CH₃NO₂ to afford a cream-coloured product. The IR spectrum of this complex showed, in addition to bands due to coordinated L and BPh_4^- , two bands at 310 and 305 cm⁻¹ assigned to Ir-Cl stretching vibrations, $\nu(Ir-Cl)$, suggesting the formation of a *cis*-dichloro complex. The electronic spectrum of the complex showed absorptions at 348 and 297 nm tentatively assigned to d-d transitions. The magnitudes of the extinction coefficients, 113 and 1,400 M^{-1} cm⁻¹ respectively, for these absorptions are indicative of a *cis* configuration at the metal centre; d-d transitions in d^6 metal complexes have been shown previously to have larger extinction coefficients for cis than for trans-configurations owing to the lower symmetry of cis-isomers, e.g. cisand *trans*- $[Rh(X)_2(cyclam)]^+$ [13–15]. The fast-atom bombardment mass spectrum of the complex shows the main molecular ion peak at $M^+ = 531$ corresponding to $[^{193}$ Ir 35 Cl₂(L)]⁺, with the correct isotopic distribution. Daughter peaks at $M^+ = 496$ and 461 correspond to $[^{193}Ir^{35}Cl(L)]^+$ and $[^{193}Ir(L)]^+$ respectively, formed by successive loss of Cl. These data together with analytical data suggest that the complex isolated was $cis-[IrCl_2(L)]^+BPh_4^-$.

In order to confirm the structure of the complex and the connectivity and conformation of the macrocyclic ligand, a single crystal X-ray structural determination was undertaken. Crystals of $cis-[IrCl_2(L)]BPh_4$ were grown from CH_1NO_2/Et_2O . Figure 1 gives views of the complex cation. The structure analysis confirms the cis configuration of the Cl^{-} ligands, with Ir-Cl(1) 2.389(5), Ir-Cl(2) 2.385(5) Å. The macrocycle is coordinated to the Ir^{III} centre as a tetradentate ligand, Ir-S(1) 2.277(4), Ir-S(4) 2.287(5), Ir-S(8) 2.268(4), Ir-S(11) 2.343(5) Å, and adopts a folded conformation with Cl(1) and Cl(2) lying trans to S(8) and S(1) respectively. The conformation of the coordinated ligand in this complex is similar to that in cis-[RuCl₂(L)] [6] and indicates a general tendency of L to bind to larger metal ions to give cis octahedral complexes. In contrast, cyclam binds to Rh^{III} to give both cisand trans-dichloro complexes [12,15], while only a trans isomer has been isolated the cation $[RhCl_2(tmc)]^+$ (tmc = 1,4,8,11-tetramethyl-1,4,8,11for tetraazacyclotetradecane) [16]. The 13 C NMR spectrum of cis-[IrCl₂(L)]⁺ in CD₃NO₂ shows five resonances at δ 37.99, 29.52, 28.96, 28.39, 23.90 ppm for the secondary carbon centres of the coordinated macrocycle (L), confirming the presence of only one isomer and retention of the cis configuration in solution. The metal-sulphur

Fig. 1. Two views of the single crystal X-ray structure of cis-[IrCl₂(L)]BPh₄ with numbering scheme used.

bond lengths in cis- $[IrCl_2(L)]^+$ follow the same pattern as found for cis- $[RuCl_2(L)]^+$ [6]. For the Ru^{II} complex, it was noted that the metal-sulphur bond distances trans to Cl⁻ (2.262(1) Å) were shorter than those trans to S (2.333(1) Å). This is attributed to greater Ru \rightarrow S(π) back-donation to the thioether donors trans to Cl⁻ [6]. For cis- $[IrCl_2(L)]^+$, the same general pattern in bond lengths is observed, with Ir-S 2.277(4), 2.268(4) Å (trans to Cl⁻) and 2.287(5) 2.343(5) Å (trans to S).

Cyclic voltammetry of cis-[IrCl₂(L)]PF₆ in CH₃CN (0.1 M ⁿBu₄NPF₆) at platinum electrodes shows no oxidation in the range $0 \rightarrow +2.0$ V vs. Fc/Fc⁺. The complex undergoes an irreversible reduction at $E_p = -1.82$ V vs. Fc/Fc⁺ at a scan rate of 200 mV s⁻¹, presumably corresponding to the formation of an Ir^I species of type [Ir(L)]⁺ via loss of Cl⁻. This occurs at a considerably more cathodic potential than that for the analogous tetra-aza complex *trans*-[RhCl₂(tmc)]⁺ which shows a quasi-reversible Rh^{III/II} couple at $E_{1/2} - 0.99$ V vs. Fc/Fc⁺ in CH₃CN [16]. Larger thioether ring systems may be more likely to give *trans*-dichloro complexes, and to stabilise lower valent, electron-rich Ir centres [7].

Experimental

Infrared spectra were recorded as Nujol mulls or as KBr or CsI discs on a Perkin-Elmer 598 spectrometer over the range 200-4000 cm⁻¹. UV-visible spectra were recorded for solutions in quartz cells using a Pye Unicam SP8-400 spectrophotometer. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. Electron impact mass spectra were obtained on a Kratos MS 902 and fast atom bombardment mass spectra on a Kratos MS 50TC spectrometer. Electrochemical measurements were performed with a Bruker E310 Universal Modular Polarograph; for all readings a three-electrode potentiostatic system in acetonitrile containing 0.1 M ⁿBu₄NPF₆ as supporting electrolyte was used. Cyclic voltammetric measurements were carried out with a double platinum electrode and a Ag/AgCl reference electrode. Potentials are quoted versus ferro-

392

cene/ferrocinium, Fc/Fc^+ . ¹H and ¹³C NMR spectra were recorded at 200 and 50.32 MHz, respectively, on Bruker a WP200 spectrometer.

1,4,8,11-Tetrathiacyclotetradecane was purchased from Aldrich Chemicals.

Synthesis of [IrCl₂(L)]BPh₄

To a solution of 1,4,8,11-tetrathiacyclotetradecane (0.04 g, 1.49×10^{-4} mol) in refluxing EtOH (50 cm³) containing an excess of NaBPh₄ (0.075 g, 2.19×10^{-4} mol) was added a solution of IrCl₃·3H₂O (0.052 g, 1.47×10^{-4} mol) in water (5 cm³). The mixture was refluxed under N₂ for 14 h then allowed to cool, and the yellow/brown precipitate collected. The product was dissolved in hot MeNO₂ and filtered to remove insoluble chloro-bridged polymers. The filtrate was cooled to afford a cream precipitate of [IrCl₂(L)]BPh₄, which was collected and dried in vacuo. Yield 0.042 g, 33%. Elemental analysis: found C, 47.4; H, 4.8% calculated for [IrCl₂(L)]BPh₄ C, 48.0; H, 4.7%. Infrared spectrum (CsI disc): (L): 2910(m), 1430(vs), 1270(m) cm⁻¹, BPh₄⁻: 3060, 2980, 1580, 1480, 1430, 860, 840, 810, 610, 530 cm⁻¹, (Ir-Cl): 310, 305 cm⁻¹. Mass spectrum (FAB) in dmf/glycerol matrix: M^+ (found) = 531, 496, 461; M^+ (calculated) = 531 for [¹⁹³Ir³⁵Cl₂(L)]⁺, 496 for [¹⁹³Ir³⁵Cl(L)]⁺, 461 for [¹⁹³Ir(L)]⁺. UV-VIS (MeCN): λ_{max} 348 (113), 297 (1, 400), 275 (2, 760), 267 (3, 370), 216 nm (ϵ_{max} 29,400 M^{-1} cm⁻¹).

Synthesis of $[IrCl_2(L)]PF_6$

The PF₆⁻ salt was prepared by using NH₄PF₆ in place of NaBPh₄ in the above preparation. Elemental analysis: Found C, 18.1; H, 3.0; S, 18.8. [IrCl₂(L)]PF₆ calcd.: C, 17.8; H, 3.0; S, 18.9%. ¹H NMR (CD₃NO₂, 293 K, 200 MHz): δ 2.5–3.5 ppm (m, CH₂). ¹³C NMR (CD₃NO₂, 293 K, 50.32 MHz): δ 37.99, 29.52, 28.96, 28.39, 23.90 ppm.

X-Ray structure determination of [IrCl₂(L)]BPh₄

A colourless crystal ($0.46 \times 0.15 \times 0.15$ mm) suitable for an X-ray diffraction study was obtained by diffusion of Et₂O vapour into a solution of the complex in CH₃NO₂.

Crystal data. $C_{34}H_{40}BCl_2IrS_4$, M = 850.85, monoclinic, space group $P2_1$, with a 12.6927(14), b 12.1361(20), c 14.4912(18) Å, β 111.813(13)°, V 2072.4 Å³ (From θ values of 20 reflections measured at $\pm \omega$, 19 < 2 θ < 30°, λ 0.71073 Å), Z = 2, D_c 1.363 g cm⁻³, μ 35.18 cm⁻¹, F(000) = 848.

Table 1

Bond I	lengths	(Å)	with	standard	deviations
--------	---------	-----	------	----------	------------

Ir(1)-S(1)	2.277(4)	S(8)-C(7)	1.772(21)	
Ir(1)-S(4)	2.287(5)	S(8)-C(9)	1.775(20)	
Ir(1)-S(8)	2.268(4)	S(11)-C(10)	1.851(23)	
Ir(1)-S(11)	2.343(5)	S(11)-C(12)	1.811(21)	
Ir(1)-Cl(1)	2.389(5)	C(2)C(3)	1.55(3)	
Ir(1)-Cl(2)	2.385(5)	C(5)-C(6)	1.46(3)	
S(1)C(2)	1.855(21)	C(6)-C(7)	1.58(3)	
S(1)-C(14)	1.809(17)	C(9)-C(10)	1.59(3)	
S(4)C(3)	1.781(20)	C(12)-C(13)	1.48(3)	
S(4)-C(5)	1.755(24)	C(13)-C(14)	1.57(3)	

Table 2		
Angles (degrees) w	rith standard	deviations

$\overline{S(1)-Ir(1)-S(4)}$	88.10(15)	Ir(1)-S(4)-C(5)	111.3(8)
S(1) - Ir(1) - S(8)	86.42(15)	C(3)-S(4)-C(5)	102.1(10)
S(1)-Ir(1)-S(11)	97.65(15)	Ir(1)-S(8)-C(7)	110.1(7)
S(1)-Ir(1)-Cl(1)	91.29(16)	Ir(1)-S(8)-C(9)	103.5(6)
S(1) - Ir(1) - Cl(2)	176.15(15)	C(7)-S(8)-C(9)	103.7(9)
S(4) - Ir(1) - S(8)	98.93(16)	Ir(1)-S(11)-C(10)	103.1(7)
S(4)-Ir(1)-S(11)	172.26(16)	Ir(1)-S(11)-C(12)	111.0(7)
S(4) - Ir(1) - Cl(1)	86.72(16)	C(10)-S(11)-C(12)	100.2(10)
S(4) - Ir(1) - Cl(2)	88.96(16)	S(1)-C(2)-C(3)	103.5(13)
S(8) - Ir(1) - S(11)	86.64(16)	S(4)-C(3)-C(2)	109.0(14)
S(8) - Ir(1) - Cl(1)	173.81(16)	S(4)-C(5)-C(6)	118.5(18)
S(8) - Ir(1) - Cl(2)	91.58(15)	C(5)-C(6)-C(7)	118.7(20)
S(11) - Ir(1) - Cl(1)	87.97(16)	S(8) - C(7) - C(6)	108.0(15)
S(11) - Ir(1) - Cl(2)	85.51(16)	S(8) - C(9) - C(10)	105.0(13)
Cl(1) - Ir(1) - Cl(2)	91.02(16)	S(11)-C(10)-C(9)	107.4(14)
Ir(1)-S(1)-C(2)	99.9(7)	S(11)-C(12)-C(13)	120.4(15)
Ir(1)-S(1)-C(14)	110.0(6)	C(12)-C(13)-C(14)	116.3(17)
C(2)-S(1)-C(14)	104.8(9)	S(1)-C(14)-C(13)	106.5(12)
Ir(1)-S(4)-C(3)	103.4(7)		

Table 3

Torsion angles (degrees) with standard deviations

$\overline{S(4)-Ir(1)-S(1)-C(2)}$	25.7(7)	S(1)-Ir(1)-S(11)-C(12)	23.7(7)
S(4)-Ir(1)-S(1)-C(14)	135.5(6)	S(4)-Ir(1)-S(11)-C(10)	139.5(13)
S(8)-Ir(1)-S(1)-C(2)	124.8(7)	S(4)-Ir(1)-S(11)-C(12)	~114.0(13)
S(8)-Ir(1)-S(1)-C(14)	-125.4(6)	S(8) - Ir(1) - S(11) - C(10)	3.1(7)
S(11)-Ir(1)-S(1)-C(2)	-149.1(7)	S(8)-Ir(1)-S(11)-C(12)	109.6(7)
S(11)-Ir(1)-S(1)-C(14)	- 39.3(6)	Cl(1)-Ir(1)-S(11)-C(10)	- 173.8(7)
Cl(1)-Ir(1)-S(1)-C(2)	- 61.0(7)	Cl(1)-Ir(1)-S(11)-C(12)	-67.3(7)
Cl(1)-Ir(1)-S(1)-C(14)	48.8(6)	Cl(2)-Ir(1)-S(11)-C(10)	95.0(7)
Cl(2)-Ir(1)-S(1)-C(2)	66.0(24)	Cl(2)-Ir(1)-S(11)-C(12)	- 158.5(7)
Cl(2)-Ir(1)-S(1)-C(14)	175.8(22)	Ir(1)-S(1)-C(2)-C(3)	- 55.6(13)
S(1)-Ir(1)-S(4)-C(3)	3.7(7)	C(14)-S(1)-C(2)-C(3)	-169.5(12)
S(1)-Ir(1)-S(4)-C(5)	112.6(9)	Ir(1)-S(1)-C(14)-C(13)	67.0(12)
S(8) - Ir(1) - S(4) - C(3)	- 82.4(7)	C(2)-S(1)-C(14)-C(13)	173.6(12)
S(8)-Ir(1)-S(4)-C(5)	26.5(9)	Ir(1)-S(4)-C(3)-C(2)	-40.6(14)
S(11)-Ir(1)-S(4)-C(3)	141.9(13)	C(5)-S(4)-C(3)-C(2)	-156.3(14)
S(11)-Ir(1)-S(4)-C(5)	-109.3(14)	Ir(1)-S(4)-C(5)-C(6)	-41.8(20)
Cl(1)-Ir(1)-S(4)-C(3)	95.1(7)	C(3)-S(4)-C(5)-C(6)	67.9(20)
Cl(1)-Ir(1)-S(4)-C(5)	-156.0(9)	Ir(1)-S(8)-C(7)-C(6)	60.6(15)
Cl(2)-Ir(1)-S(4)-C(3)	-173.8(7)	C(9)-S(8)-C(7)-C(6)	170.7(14)
Cl(2)-Ir(1)-S(4)-C(5)	~ 64.9(9)	Ir(1)-S(8)-C(9)-C(10)	- 56.7(13)
S(1)-Ir(1)-S(8)-C(7)	-125.0(7)	C(7)-S(8)-C(9)-C(10)	-171.7(13)
S(1)-Ir(1)-S(8)-C(9)	124.7(7)	Ir(1)-S(11)-C(10)-C(9)	- 37.2(14)
S(4)-Ir(1)-S(8)-C(7)	- 37.5(7)	C(12)-S(11)-C(10)-C(9)	- 151.8(14)
S(4)-Ir(1)-S(8)-C(9)	-147.8(7)	Ir(1)-S(11)-C(12)-C(13)	- 37.5(18)
S(11)-Ir(1)-S(8)-C(7)	137.1(7)	C(10)-S(11)-C(12)-C(13)	70.9(18)
S(11)-Ir(1)-S(8)-C(9)	26.8(7)	S(1)-C(2)-C(3)-S(4)	64.7(14)
Cl(1)-Ir(1)-S(8)-C(7)	166.5(16)	S(4)-C(5)-C(6)-C(7)	72.1(25)
Cl(1)-Ir(1)-S(8)-C(9)	56.3(17)	C(5)-C(6)-C(7)-C(8)	-81.6(22)
Cl(2)-Ir(1)-S(8)-C(7)	51.7(7)	S(8) -C(9)-C(10)-S(11)	62.1(15)
Cl(2)-Ir(1)-S(8)-C(9)	- 58.6(7)	S(11)-C(12)-C(13)-C(14)	70.0(22)
S(1)-Ir(1)-S(11)-C(10)	- 82.8(7)	C(12)-C(13)-C(14)-S(1)	- 84.5(18)

Table 4

Atomic coordinates with esds

	x	у	z	U _{iso}
Ir(1)	-0.13020(4)	0.0000	-0.16511(3)	0.0389(3)
S(1)	-0.3025(3)	-0.0714(4)	-0.2598(3)	0.0541(24)
S(4)	-0.0928(4)	-0.1606(4)	-0.0762(3)	0.062(3)
S(8)	-0.0728(4)	-0.0509(4)	-0.2896(3)	0.0557(25)
S(11)	-0.1573(4)	0.1766(4)	-0.2355(3)	0.068(3)
Cl(1)	-0.2034(4)	0.0680(4)	-0.0461(3)	0.078(3)
Cl(2)	0.0556(3)	0.0628(4)	-0.0661(3)	0.069(3)
C(2)	-0.3221(16)	-0.1701(16)	-0.1698(15)	0.083(13)
C(3)	-0.2142(15)	-0.2433(15)	-0.1396(15)	0.074(12)
C(5)	0.0160(18)	-0.2353(18)	-0.0949(18)	0.096(7)
C(6)	0.0163(20)	-0.2421(17)	-0.1955(19)	0.106(18)
C(7)	0.0491(16)	-0.1359(16)	-0.2423(16)	0.083(14)
C(9)	-0.0203(15)	0.0734(15)	-0.3208(13)	0.075(13)
C(10)	-0.1231(16)	0.1579(19)	-0.3481(16)	0.094(16)
C(12)	-0.3068(17)	0.2095(16)	-0.2922(14)	0.084(14)
C(13)	-0.3900(15)	0.1239(19)	-0.3451(14)	0.084(14)
C(14)	-0.4121(12)	0.0311(13)	-0.2789(13)	0.071(13)
B (1)	-0.7682(12)	0.0237(13)	-0.5127(10)	0.044(4)
C(1')	-0.6589(5)	0.0257(10)	-0.6377(5)	0.054(4)
C(2')	-0.6517(5)	0.0128(10)	-0.7309(5)	0.064(4)
C(3')	-0.7481(5)	-0.0152(10)	-0.8130(5)	0.076(5)
C(4')	-0.8517(5)	-0.0304(10)	-0.8019(5)	0.055(4)
C(5')	-0.8589(5)	-0.0175(10)	-0.7087(5)	0.054(4)
C(6')	-0.7625(5)	0.0105(10)	-0.6267(5)	0.043(3)
C(7')	-0.9666(6)	-0.0705(5)	-0.5299(7)	0.042(3)
C(8')	-1.0838(6)	-0.0678(5)	-0.5545(7)	0.058(4)
C(9')	-1.1419(6)	0.0322(5)	-0.5778(7)	0.057(4)
C(10')	-1.0828(6)	0.1295(5)	-0.5765(7)	0.056(4)
C(11')	-0.9657(6)	0.1268(5)	0.5519(7)	0.045(3)
C(12')	-0.9076(6)	0.0268(5)	-0.5286(7)	0.043(3)
C(13')	-0.6310(9)	-0.1535(9)	-0.4643(6)	0.059(4)
C(14')	-0.5816(9)	-0.2434(9)	- 0.4038(6)	0.064(4)
C(15')	-0.6062(9)	-0.2644(9)	-0.3193(6)	0.063(4)
C(16')	-0.6802(9)	-0.1954(9)	-0.2953(6)	0.072(5)
C(17')	-0.7296(9)	-0.1054(9)	- 0.3559(6)	0.060(4)
C(18')	-0.7050(9)	-0.0845(9)	- 0.4404(6)	0.046(3)
C(19')	-0.6820(9)	0.1565(7)	- 0.3568(6)	0.064(4)
C(20')	-0.6334(9)	0.2549(7)	- 0.3108(6)	0.069(5)
C(21')	- 0.6144(9)	0.3405(7)	- 0.3669(6)	0.067(4)
C(22′)	-0.6439(9)	0.3277(7)	-0.4692(6)	0.072(5)
C(23')	-0.6925(9)	0.2293(7)	-0.5152(6)	0.059(4)
C(24')	-0.7116(9)	0.1437(7)	-0.4590(6)	0.045(3)

Data collection and processing. Stoe-Siemens AED2 four-circle diffractometer, graphite-monochromated Mo- K_{α} X-radiation, $\omega - \theta$ scans with ω scan width (1.4 + 0.35 tan θ)°, 2882 reflections measured ($2\theta_{\max}$ 45°, $h - 13 \rightarrow 12$, $k \ 0 \rightarrow 13$, $l \ 0 \rightarrow 14$), giving 2508 with $F \ge 6\sigma(F)$ for use in subsequent calculations. No significant crystal decay was observed.

Structure analysis and refinement. The Ir position was located from a Patterson synthesis and input to DIRDIF [17], which located the Cl and S atoms. Iterative

least-squares refinements and difference Fourier syntheses [18] located all other non-H atoms. At isotropic convergence, final correction for absorption was made using DIFABS [19]. (An initial absorption correction was made using 48 Ψ scans (max, transmission factor = 0.2382, min. = 0.2022)). Anisotropic thermal parameters were refined for Ir, S, Cl, and C atoms of the cation. H atoms were included at calculated positions [18]. Phenyl groups of the BPh₄⁻ counter-ions were refined as rigid groups. The absolute configuration of the structure was not easy to establish with certainty as both hands refined well to essentially the same R-factors. The 20 reflections were selected with the greatest discrimination factor, defined as D = $|F_1F_2|\sin^2(\phi_1 - \phi_2)/|F_0|$ where subscripts 1 and 2 refer to structure factors calculated for the Ir atoms and for the other atoms respectively. For the fully refined data sets, these 20 data gave R = 0.032 for the hand chosen, and 0.049 for the opposite hand. More strikingly, bond lengths to Ir are much less consistent in the less favoured hand, the Ir-S lengths being more divergent, and the Ir-Cl lengths being much shorter. The weighting scheme $w^{-1} = \sigma^2(F) + 0.002572F^2$ gave satisfactory analyses. At convergence, $R, R_w = 0.0363$ and 0.0509 respectively for 205 parameters, S = 1.137. The maximum and minimum residues in the final ΔF syntheses were +0.67 and $-0.64 \text{ e}^{\text{A}^{-3}}$ respectively. Illustrations were prepared by use of ORTEP [20] and molecular geometry calculations by use of CALC [21], scattering factor data were taken from ref. 22. Bond lengths, angles, torsion angles and fractional coordinates are given in Tables 1-4.

Acknowledgements

We thank the SERC for support and Johnson-Matthey Plc for generous loans of platinum metals.

References

- 1 M. Schröder, Pure Appl. Chem., 60 (1988) 517.
- 2 M.N. Bell, A.J. Blake, R.O. Gould, A.J. Holder, T.I. Hyde, A.J. Lavery, G. Reid and M. Schröder, J. Inclusion Phenomena, 5 (1987) 169.
- 3 N.W. Alcock, N. Herron and P. Moore, J. Chem. Soc., Chem. Commun., (1976) 886.
- 4 N.W. Alcock, N. Herron and P. Moore, J. Chem. Soc., Dalton Trans., (1978) 394.
- 5 R.E. DeSimone and M.D. Glick, J. Am. Chem. Soc., 97 (1974) 942.
- 6 T.F. Lai and C.K. Poon, J. Chem. Soc., Dalton Trans., 1982, 1465.
- 7 T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto and T. Higuchi, J. Chem. Soc., Chem. Commun., 1985, 1137.
- 8 W.D. Lemke, K.E. Travis, N.E. Takvoryan and D.H. Busch, Adv. Chem. Ser., 150 (1977) 358. See also: K. Travis and D.H. Busch, Inorg. Chem., 13 (1974) 2591.
- 9 T. Yoshida, T. Adachi, T. Ueda, M. Watanabe, M. Kaminaka and T. Higuchi, Angew. Chem., 99 (1987) 1182; Angew. Chem. Int. Ed. Engl., 26 (1987) 1171.
- 10 J. Cragel, V.B. Petts, M.D. Glick and R.E. DeSimone, Inorg. Chem., 17 (1978) 2885; R.E. DeSimone and M.D. Glick, ibid., 17 (1978) 3574.
- 11 S.G. Murray and F.R. Hartley, Chem. Rev., 81 (1981) 365.
- 12 C.-K. Poon, T.-W. Tang and C.-M. Che, J. Chem. Soc., Dalton Trans., (1981) 1697; C.-K. Poon, T-W Tang and C-M. Che, J. Chem. Soc., Dalton Trans., (1983) 1647; J. MacB. Harrowfield, A.J. Herit, P.A. Lay, A.M. Sargeson, A.M. Bond, W.A. Mulac and J.C. Sullivan, J. Am. Chem. Soc., 105 (1983) 5503; A.J. Blake, T.I. Hyde, R.S.E. Smith and M. Schröder, J. Chem. Soc., Chem. Commun., (1986) 334; A.J. Blake, T.I. Hyde, and M. Schröder, J. Chem. Soc., Dalton Trans., (1988) 1165.
- 13 E.J. Bounsall and S.R. Koprich, Can. J. Chem., 44 (1970) 1481.

- 14 P.K. Bhattacharya, J. Chem. Soc., Dalton Trans., (1980) 810.
- 15 M.E. Sosa and M.L. Tobe, J. Chem. Soc., Dalton Trans., (1986) 427; M.J. Rosales, M.E. Sosa and M.L. Tobe, J. Coord. Chem., 16 (1987) 59.
- 16 A.J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., (1988) 1561.
- 17 DIRDIF, P.T. Beurskens, W.P. Bosman, H.M. Doesbury, Th. E.M. van den Hark, P.A.J. Prick, J.H. Noordik, G. Beurskens, R.O. Gould and V. Parthasarathia, Applications of Direct Methods to Difference Structure Factors, University of Nijmegen, Netherlands, 1983.
- 18 SHELX76, Program for Crystal Structure Determination, G.M. Sheldrick, University of Cambridge, 1976.
- 19 DIFABS, Program for Empirical Absorption Corrections, N. Walker and D. Stuart, Acta Crystallogr. A, 39 (1983) 158.
- 20 ORTEPII, interactive version. P.D. Mallinson and K.W. Muir, J. Appl. Cryst., 18 (1985) 51.
- 21 CALC, Fortran77 version. R.O. Gould and P. Taylor, University of Edinburgh, 1985.
- 22 D.T. Cromer and J.L. Mann, Acta Crystallogr. A, 24 (1968) 321.